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The formation and dynamics of spatially extended compositional domains in multicomponent lipid mem-
branes both in vivo and in vitro lie at the heart of many important biological and biophysical phenomena. While
the thermodynamic basis for domain formation has been explored extensively in the past, the roles of mem-
brane and exterior fluid hydrodynamics on domain formation kinetics have received less attention. A case in
point is the impact of hydrodynamics on the dynamics of compositional heterogeneities in lipid membranes in
the vicinity of a critical point. In this Rapid Communication it is argued that the asymptotic dynamic behavior
of a lipid membrane system in the vicinity of a critical point is strongly influenced by hydrodynamic interac-
tions. More specifically, a mode-coupling argument is developed which predicts a scaling behavior of lipid
transport coefficients near the critical point for both symmetric and asymmetric bilayers immersed in a bulk
fluid.
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The presence of compositional heterogeneities and their
dynamics in lipid membranes in intact cells �“lipid rafts”�
�1–3� present intriguing questions from both the physical and
biological perspectives. Fundamentally, one would like to
understand both how these domains relate to different bio-
logical functions and which physical mechanisms living cells
can employ to control the membrane “microstructure” in
vivo, e.g., the spatiotemporal evolution of local lipid compo-
sitions and the presence �or absence� of specific membrane
proteins. In the latter endeavor, experimental �4–8� and the-
oretical �9–15� studies of in vitro membranes have proven
very useful as they have provided a beautiful physical picture
of the phase behavior of multicomponent lipid mixtures in
the absence of cellular phenomena �such as active lipid trans-
port to and from the membrane�. In contrast to equilibrium
behavior in synthetic membranes, however, the dynamics of
compositional lipid domains is currently not as well under-
stood even though it is by now well established that the raft
domains in vivo are highly dynamic entities �3�.

One often overlooked complication in developing physi-
cally based models for membrane domain kinetics resides in
the treatment of the surrounding fluid. In particular, fluctua-
tions in the compositional domains will induce flow fields in
the surrounding fluid, which will subsequently back react
with the membrane. One direct consequence of this back
reaction is the nontrivial dependence of the diffusion coeffi-
cient D of a membrane inclusion or compositional domain on
the domain/inclusion size r: both theory �16,17� and experi-
ments �6� have demonstrated that D� ln�1 /r� for small r
with a crossover to D�1 /r at large r. Particle-based models
for membranes, which appropriately account for hydrody-
namic effects arising from the surrounding fluid and provide
a detailed microscopic view of collective phenomena associ-
ated with lateral lipid diffusion �13,15,18�, have difficulties
in probing large-scale compositional domain dynamics due
to computational restrictions. While rather simple spatially
extended continuum models have been proposed recently
which address domain formation processes in synthetic bi-
layers across mesoscopic and macroscopic scales �10,11� and
elucidate the potential role of active cellular processes on

raftlike domain formation dynamics �19�, these models do
not explicitly incorporate the role of hydrodynamics on com-
positional domain formation and dynamics, with the notable
exception of Ref. �20� wherein hydrodynamics within the
membrane was included while the coupling between the
membrane the exterior fluid was neglected. In order to de-
velop a better understanding of compositional raft domain
dynamics in lipid membranes, both in vivo and in vitro, it is
thus necessary to quantitatively assess when hydrodynamics
may or may not be neglected or when they perhaps com-
pletely dominate the dynamics.

A particularly interesting and experimentally relevant re-
gime is that close to a second order phase transition at T
=Tc, where an initially homogeneous lipid system becomes
compositionally patterned. While the static critical behavior
of the membrane system is expected to belong to the two-
dimensional �2D� Ising model universality class �UC�
�7,8,21�, the critical dynamics has been explored experimen-
tally only very recently �7�. Specifically, Ref. �7� studied the
scaling behavior of the concentration diffusion coefficient Dc
and reported a result that was consistent with theoretical
models which only include simple diffusive transport of the
lipids along the membrane, akin to the model in Ref. �19� in
the absence of cellular lipid trafficking. Theoretically, on the
other hand, the coupling of lipids to both the membrane and
exterior fluid flow fields is expected to influence the dynamic
critical behavior and in particular affect Dc �21�—indeed, a
recent theoretical analysis by Tserkovnyak and Nelson dem-
onstrated that the diffusivity of a membrane protein is
strongly affected by critical fluctuations in a lipid membrane
suspended over a solid substrate �22�. In this Rapid Commu-
nication it is argued that the asymptotic behavior of the con-
centration diffusion coefficient Dc in lipid bilayers approach-
ing a critical point is strongly influenced by hydrodynamic
interactions above a characteristic hydrodynamic length
scale lH, which depends on the viscosities of the membrane
and the exterior fluid, respectively. Specifically, it is argued
that asymptotically close to the critical point and in lipid
membranes immersed in a bulk fluid Dc

−1��, where �
denotes the static correlation length.
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The analysis may be developed as follows. The mem-
brane, which occupies the region −h�z�0, −��x��, and
−��y��, is assumed to be surrounded by a simple New-
tonian fluid with viscosity �. Furthermore, the velocity field
u�r , t� of the exterior fluid satisfies �17�

��2u − �p = 0 and � · u = 0. �1�

Along the membrane-fluid interfaces we assume a no-slip
boundary condition, which implies that u�x ,y ,0�=u�x ,y ,
−h�=uM�x ,y�, where uM denotes the local velocity field
within the membrane. Furthermore, the exterior fluid applies
shear traction forces along the two membrane-fluid interfaces
of magnitudes F1 and F2, respectively, which appear as body
forces within the membrane.

For simplicity, we assume that the membrane comprises
of two lipid types, A and B, with local concentrations cA and
cB, respectively. Now, within the membrane, the dimension-
less concentration field ���cA�x , t�−cB�x , t�� / c̄, where c̄ de-
notes the critical composition, evolves according to

��

�t
+ � · ��uM� = �0�

2	� + 
 , �2�

where 	���F /�� denotes the chemical potential with the
free energy given by �21�

F =� dxdy�1

2
����2 +

1

2
r0�2 + u0�4 + ��x,y,t��	 , �3�

where uM denotes the local velocity field within the mem-
brane, �=−F ·x denotes an external field, and the stochastic
noise term satisfies 

�=0 and 

�x , t�
�x� , t���=−2�0�

2��x
−x����t− t��. Here, we have assumed that the bilayer is sym-
metric with respect to lipid compositions and that the com-
positions are coupled in the two leaflets such that they be-
come spatially synchronized as has been observed in
experiments �5�; asymmetric bilayers will be discussed
briefly at the end of this Rapid Communication.

Now, the membrane flow field uM�x , t� satisfies �17,23�

�uM

�t
= �M�2uM − �pM − � � 	� − �F1 + F2�/h + f�x,t�

�4�

and

� · uM = 0, �5�

where �M denotes the membrane viscosity and where the
fluctuating term f satisfies 
f
�=0 and 
f
�x , t�f��x� , t���
=−2�M�2��x−x����t− t���
,�. The effective membrane pres-
sure pM is employed to enforce the incompressibility condi-
tion, while the term ��	� accounts for the impact of com-
positional variations and external field F in the membrane
stress tensor. Note that we have assumed that the velocity
fields of the two leaflets are spatially synchronized �24�.

Upon switching on the external field, a net concentration
current density j� is established such that j�=�F, which de-
fines the transport coefficient � for the concentration differ-
ence. It is straightforward to show that the concentration dif-
fusion constant Dc=� /��, where the order-parameter

susceptibility ����� /�	���7/4 for the 2D Ising model;
here, � denotes the correlation length with asymptotic scaling
behavior ���T−Tc�−1. Furthermore, it is precisely Dc which
has been measured in Ref. �7�. Note that in the absence of
advective transport, �=�0 even as the critical point is ap-
proached �21�, which implies that Dc��−7/4. The goal of the
mode-coupling analysis below is to account for the effects of
membrane and exterior fluid hydrodynamics on �.

To this end, following Ref. �25�, we introduce a dimen-
sionless variable � through ��2�� /h�M. Here, � denotes
the correlation length normalized by a hydrodynamic length
lH=h�M / �2��, which plays an important role in the subse-
quent analysis. We note that upon employing typical values
h�M �10−10 Pa s m �see, e.g., Ref. �26�� and ��10−3 Pa s
for water at room temperature, one obtains lH
50 nm for a
lipid bilayer. Now, consider a region of the membrane of area

��2. The typical value of � in this region ��̄� can be ob-
tained by combining the spatial integral of the two-point cor-

relation function �dRG�R�=�dR
��r , t���r+R , t��� �̄2�2

with the static susceptibility sum rule �dRG�R�=kBT��:

�̄2 � kBT��/�2. �6�

In the presence of a field F, the net applied force on the
region is

fapp = − �
0

�

dx�
0

�

dy� � 	� � �2�̄F . �7�

The domain accelerates until the viscous drag from the mem-
brane fluid and the exterior fluid provides a counteracting
force. The drag force can be obtained in closed form by
neglecting thermal fluctuations in Eq. �4� and assuming that
the domain translates as a rigid body �27�, in which case it
can be mathematically treated in exactly the same way as a
cylindrical membrane inclusion �16,17,25� with the result

fvisc = −
4��Mh

ln�2�−1� − �
uM when � � 1, �8�

where �=0.577215 denotes the Euler constant and

fvisc = − 8�Mh�uM when � � 1. �9�

A very useful analytical expression for the diffusion coeffi-
cient of a cylindrical membrane inclusion, which has been
shown to provide an accurate approximation of the exact
result from Ref. �17� for all �, has been provided by Petrov
and Schwille �25�, in terms of which the expression for fvisc
becomes

fvisc = −
4��Mh

����
uM , �10�

where
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���� =

ln�2�−1� − � + 4�/� −
1

2
�2 ln�2�−1�

1 −
1

3
�3 ln�2�−1� + c1�b1/�1 + c2�b2�

. �11�

Here, c1=0.73761, b1=2.74819, c2=0.52119, and b2
=0.61465 �25�.

Now, the region of fluid will accelerate until the viscous
force balances the external one:

fapp = − fvisc ↔ fapp =
4��Mh

����
uM . �12�

Finally, the net current density is given by

j� = �̄uM =
����

4��Mh
�̄2�2F �13�

or

j� =
����

4��Mh
kBT��F = �F . �14�

Thus, the transport coefficient �, renormalized by hydrody-
namic interactions, in this simple mode-coupling approach is
given by

� = �0 +
����

4��Mh
BkBT��, �15�

where we have included a dimensionless constant B�O�1�
which cannot be obtained from the present analysis. Finally,
the expression for � above implies that

Dc =
�

��

=
A�0

�7/4 +
����

4��Mh
BkBT . �16�

Let us now briefly discuss the implications of Eq. �16�,
which is the central result of this Rapid Communication.
When �=� / lH�1, the correlation length is below the char-
acteristic hydrodynamic length scale, and a logarithmic cor-
rection to Dc emerges. On the other hand, in the asymptotic
case � / lH�1, the logarithmic correction is replaced by a
more slowly varying term in Dc, which dominates asymptoti-
cally,

Dc �
kBT

��
when � → � , �17�

such that Dc
−1 diverges exactly the same way as the correla-

tion length � as the critical point is approached. Furthermore,
we note that although the static critical behavior belongs to
the 2D Ising model UC, the dynamics appears to belong to
the so-called three-dimensional �3D� “model H” UC in the
classification scheme of Hohenberg and Halperin �21�. How-
ever, important differences exist. In particular, in the 3D
model H case, a more rigorous renormalization group treat-
ment of the model equations indicate that the bare viscosity
� also becomes renormalized to �̄ such that �̄��x� where
x��0.155�0.065� in 2D �3D� �21�, leading to a small correc-
tion to the above simple mode-coupling result: Dc��−1−x�.
In the membrane case, however, the exterior fluid remains

noncritical, and thus � is expected to remain finite at the
membrane critical point. Hence, we conjecture that Eq. �17�
is the exact asymptotic scaling law for the concentration dif-
fusion coefficient Dc in membranes immersed in a bulk fluid.
This conclusion remains valid even if the renormalized
membrane viscosity �̄M displays a weak divergence, as long

as �̄M /�→0 as �→� such that � / l̄H=2�� / �h�̄M��1. Also
note that if the bilayer is suspended above a rigid substrate at
a distance H away from the membrane, asymptotically the
viscous drag force on the domain is given by fvisc
���2 /HuM �28�, which implies that Dc�H�−2, in agree-
ment with Ref. �22�.

The generic behavior of Dc as a function of � is displayed
in Fig. 1 for three representative values for the hydrody-
namic length lH : lH=10 nm, lH=100 nm, and lH=103 nm,
corresponding to a variation in �M over two orders of mag-
nitude. Motivated by Ref. �7�, the data were generated for
each lH by evaluating Dc

−1=D0
−1+ �A�0 /�7/4+�D0�−1, where

D0�kBT / �4��Mh� denotes the lipid self-diffusion coeffi-
cient. The parameter values A�0= �5.5�10−24 m7/4 ,
5.3�10−25 m7/4 ,5.3�10−26 m7/4� and D0= �10 	m2 /s ,
1 	m2 /s ,0.1 	m2 /s� for lH=10 nm, lH=100 nm, and lH
=103 nm, respectively, were employed. The parameters
were chosen such that Dc�D0 when �
10 nm. There are
three important features in the plot. First, a microscopic lH
leads to a regime where Dc��−7/4 dominates before the
asymptotic behavior sets in at large �. Second, as lH in-
creases, the regime where Dc��−7/4 can be observed be-
comes more narrow and is eventually replaced with a less
rapidly decreasing behavior, courtesy of the logarithmic term
in Eq. �16�, before the asymptotic behavior Dc��−1 again
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FIG. 1. �Color online� Concentration diffusion coefficient Dc as
a function of the static correlation length � for three representative
values of the hydrodynamic length lH from Eq. �16�: lH=10 nm
�upper line�, lH=100 nm �middle line�, and lH=103 nm �bottom
line�. The two dashed lines on the top and bottom have slopes −7 /4
and −1, respectively.
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sets in. Third �and perhaps most importantly�, the data sug-
gest that the asymptotic scaling behavior should be most
readily observed in systems with intermediate values of lH,
given the experimental challenges in exploring systems with
correlation lengths ��10 	m. For example, the crossover to
the asymptotic behavior occurs when ��1 	m for lH
=100 nm and thus should be experimentally accessible,
while for lH=10 nm and 103 nm, the asymptotic behavior is
found only when ��10 	m. These observations are consis-
tent with the results in Ref. �7�, wherein transient Dc��−7/4

behavior was reported for ��4 	m. It is interesting to note
that these results imply that membrane and exterior fluid
hydrodynamics play a secondary role in the formation kinet-
ics of submicrometer size compositional domains in both in
vivo and in vitro membranes.

The extension of this approach to asymmetric bilayers is
straightforward. For concreteness, consider the case where
the two leaflets possess different critical temperatures such
that Tc

I �Tc
II. As the temperature is lowered toward Tc

I , leaflet
“I” will undergo critical fluctuations and exhibits similar
critical dynamics as in the symmetric case. In this case, leaf-
let “II” simply contributes to the viscous drag force on the
compositional domains in leaflet I; it is also possible that the
coupling between the lipid compositions in the two leaflets

may also induce some spatial inhomogeneities in leaflet II.
As the temperature is reduced further toward Tc

II, leaflet I
undergoes spinodal decomposition, while leaflet II remains
in a mixed state with some spatial inhomogeneities in the
lipid composition. Recently, it has been argued that in this
case the characteristic length scale in leaflet I grows as L�t�
� t1/2 asymptotically �29,30�. Finally, we speculate that as
T→Tc

II, the fluctuating composition field in leaflet II will
display similar critical dynamics as in the symmetric case.

In conclusion, in this Rapid Communication we have ar-
gued that the coupling between compositional fluctuations
near a critical point in lipid bilayers and membrane/exterior
fluid hydrodynamics leads to scaling behavior in lipid trans-
port coefficients. In particular, we predict that the composi-
tion diffusion coefficient obeys a universal scaling law Dc
��−1 in immiscible lipid membranes immersed in a bulk
fluid as the critical point is approached.

Note added. Similar results for the scaling behavior of the
concentration diffusion coefficient have been obtained by In-
aura and Fujitani �31� by using a different approach.
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